- 1 I. Bertini, G. Canti, C. Luchinat and F. Mani, J. Am. Chem. Soc., 103, 7784 (1981).
- M. E. Fabry, S. H. Koenig and W. E. Schillinger, J. Biol. Chem., 245, 4256 (1970); I. Bertini, R. D. Brown, III, S. H. Koenig and C. Luchinat, Biophys. J., in press.
- 3 I. Bertini, G. Canti and C. Luchinat, J. Am. Chem. Soc., 104, 4943 (1982).

G7

Catalysis by Zn²⁺-Metalloenzymes Proceeds via a Penta-Coordinate Metal-OH₂ Complex

MARVIN W. MAKINEN

Department of Biophysics and Theoretical Biology, The University of Chicago, Chicago, Ill. 60637, U.S.A.

The active site of a variety of metalloenzymes contains a catalytically essential tetra-coordinate Zn^{2^+} ion to which a water molecule is a ligand. It is generally assumed that the metal-bound water molecule has no role in catalysis. However, for both the native Zn^{2^+} and Co^{2^+} -reconstituted forms of carboxypeptidase A (CPA) and liver alcohol dehydrogenase (LADH), we have identified metal ion dependent ionizations that govern steady state kinetic parameters and can be ascribed only to a metal-bound water molecule in catalytically competent reaction intermediates [1, 2]. To assign the coordination environment of the Co^{2^+} ion in these reaction intermediates, we have identified spectroscopic parameters of the high-spin Co^{2^+} ion that serve as a direct index of coordination number.

Our studies [3] show on the basis of a group theoretical treatment of spin-orbit coupling, together with relationships derived through second-order perturbation theory, that the magnitude of the zero-field splitting (ZFS) of the high-spin Co^{2+} ion is a direct monitor of crystal field symmetry and that it follows the order $ZFS_4 < ZFS_5 < ZFS_6$ where the subscript indicates the coordination number. Measurement of the ZFS in structurally defined coordination complexes confirms this relationship and indicates that the magnitude of 2|D| is 0-13 cm⁻¹ for tetra-coordinate complexes, 20-60 cm⁻¹ for penta-coordinate complexes, and $90-130 \text{ cm}^{-1}$ for hexa-coordinate complexes. Application of this theory to measurements of the ZFS of CoCPA and CoLADH shows that the active site metal ion is tetra-coordinate in the free enzyme and is altered to a penta-coordinate complex in true reaction intermediates. In these intermediates the metal ion coordinates both the substrate and a water molecule simultaneously. Together with kinetic studies identifying ionizations of a metalbound water molecule and showing that the reaction pathway is identical for Zn²⁺- and Co²⁺-enzymes, the results require that, upon formation of a penta-coordinate Zn^{2+} -OH₂ complex, breakdown of the acylenzyme (mixed anhydride) reaction intermediate of CPA occurs via metal-hydroxide nucleophilic attack on the carbonyl carbon of the scissile bond while in the physiologically active, ternary enzyme-NAD^{*}alcohol complex of LADH a neutral metal-bound water molecule serves as the base catalyst for proton abstraction. The results of these studies show that the metal-bound water has an integral catalytic role in CPA and LADH. It is probable that the metal- OH_2 complex has similarly a functional role in other Zn²⁺metalloenzymes. (Supported by NIH grant GM 21900).

- 1 M. W. Makinen, L. C. Kuo, J. J. Dymowski and S. Jaffer, J. Biol. Chem., 254, 356 (1979).
- 2 (a) M. W. Makinen, W. Maret and M. B. Yim, Proc. Natl. Acad. Sci. U.S.A., 80, in press (1983); (b) W. Maret and M. W. Makinen, J. Biol. Chem., submitted for publication.
- 3 (a) M. W. Makinen and M. B. Yim, Proc. Natl. Acad. Sci. U.S.A., 78, 6221 (1981); (b) L. C. Kuo and M. W. Makinen, J. Am. Chem. Soc., to be submitted.